admin 发表于 2021-10-28 11:12:03

sm2国密加密算法php实现

sm2国密加密算法php实现可自行验证是否是你需要的sm4加密算法
密钥:asw34a5ses5w81wf
内容:123456
sm4加密后数据为:
pPtSTSIVIjizeEY05GphVA==
使用:

<div><?php</div><div>include 'Sm4Helper.php';</div><div>$key = "asw34a5ses5w81wf";</div><div>
</div><div>$sm4 = new Sm4Helper();</div><div>$data = '123456';</div><div>
</div><div>$enc = $sm4->encrypt($key, $data);</div><div>echo "encrypt: $enc\n";</div><div>
</div><div>$decdata = $sm4->decrypt($key, $enc);</div><div>echo "decrypt: $decdata\n";</div>

Sm4Helper.php类:


<?php


/**
* Sm4加密解密类
* Class Sm4Helper
* @package common\helpers
*/
class Sm4Helper
{
    const SM4_CK = [
      0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269,
      0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9,
      0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249,
      0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9,
      0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229,
      0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299,
      0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209,
      0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279
    ];

    const SM4_SBOX = [
      0xd6,0x90,0xe9,0xfe,0xcc,0xe1,0x3d,0xb7,0x16,0xb6,0x14,0xc2,0x28,0xfb,0x2c,0x05,
      0x2b,0x67,0x9a,0x76,0x2a,0xbe,0x04,0xc3,0xaa,0x44,0x13,0x26,0x49,0x86,0x06,0x99,
      0x9c,0x42,0x50,0xf4,0x91,0xef,0x98,0x7a,0x33,0x54,0x0b,0x43,0xed,0xcf,0xac,0x62,
      0xe4,0xb3,0x1c,0xa9,0xc9,0x08,0xe8,0x95,0x80,0xdf,0x94,0xfa,0x75,0x8f,0x3f,0xa6,
      0x47,0x07,0xa7,0xfc,0xf3,0x73,0x17,0xba,0x83,0x59,0x3c,0x19,0xe6,0x85,0x4f,0xa8,
      0x68,0x6b,0x81,0xb2,0x71,0x64,0xda,0x8b,0xf8,0xeb,0x0f,0x4b,0x70,0x56,0x9d,0x35,
      0x1e,0x24,0x0e,0x5e,0x63,0x58,0xd1,0xa2,0x25,0x22,0x7c,0x3b,0x01,0x21,0x78,0x87,
      0xd4,0x00,0x46,0x57,0x9f,0xd3,0x27,0x52,0x4c,0x36,0x02,0xe7,0xa0,0xc4,0xc8,0x9e,
      0xea,0xbf,0x8a,0xd2,0x40,0xc7,0x38,0xb5,0xa3,0xf7,0xf2,0xce,0xf9,0x61,0x15,0xa1,
      0xe0,0xae,0x5d,0xa4,0x9b,0x34,0x1a,0x55,0xad,0x93,0x32,0x30,0xf5,0x8c,0xb1,0xe3,
      0x1d,0xf6,0xe2,0x2e,0x82,0x66,0xca,0x60,0xc0,0x29,0x23,0xab,0x0d,0x53,0x4e,0x6f,
      0xd5,0xdb,0x37,0x45,0xde,0xfd,0x8e,0x2f,0x03,0xff,0x6a,0x72,0x6d,0x6c,0x5b,0x51,
      0x8d,0x1b,0xaf,0x92,0xbb,0xdd,0xbc,0x7f,0x11,0xd9,0x5c,0x41,0x1f,0x10,0x5a,0xd8,
      0x0a,0xc1,0x31,0x88,0xa5,0xcd,0x7b,0xbd,0x2d,0x74,0xd0,0x12,0xb8,0xe5,0xb4,0xb0,
      0x89,0x69,0x97,0x4a,0x0c,0x96,0x77,0x7e,0x65,0xb9,0xf1,0x09,0xc5,0x6e,0xc6,0x84,
      0x18,0xf0,0x7d,0xec,0x3a,0xdc,0x4d,0x20,0x79,0xee,0x5f,0x3e,0xd7,0xcb,0x39,0x48
    ];

    const SM4_FK = ;

    public $_rk = [];
    public $_block_size = 16;

    public function __construct()
    {
    }

    /**
   * sm4加密(ecb)
   * @param $key 16位十六进制的字符,比如asw34a5ses5w81wf
   * @param $data 原始数据
   * @return string
   */
    public function encrypt($key, $data)
    {
      $this->sm4KeySchedule($key);

      $bytes = $this->pad($data, $this->_block_size);
      $chunks = array_chunk($bytes, $this->_block_size);

      $ciphertext = "";
      foreach ($chunks as $chunk) {
            $ciphertext .= $this->sm4Encrypt($chunk);
      }

      return base64_encode($ciphertext);
    }

    /**
   * sm4解密
   * @param $key
   * @param $data
   * @return bool|string
   */
    public function decrypt($key, $data)
    {
      $data = base64_decode($data);
      if (strlen($data) < 0 || strlen($data) % $this->_block_size != 0) {
            return false;
      }

      $this->sm4KeySchedule($key);
      $bytes = unpack("C*", $data);
      $chunks = array_chunk($bytes, $this->_block_size);

      $plaintext = "";
      foreach ($chunks as $chunk) {
            $plaintext .= substr($this->sm4Decrypt($chunk), 0, 16);
      }
      $plaintext = $this->unPad($plaintext);

      return $plaintext;
    }

    private function sm4Decrypt($cipherText)
    {
      $x = [];
      for ($j=0; $j<4; $j++) {
            $x[$j]=($cipherText[$j*4]<<24)|($cipherText[$j*4+1]<<16)| ($cipherText[$j*4+2]<<8)|($cipherText[$j*4+3]);
      }

      for ($i=0; $i<32; $i++) {
            $tmp = $x[$i+1]^$x[$i+2]^$x[$i+3]^$this->_rk;
            $buf= (self::SM4_SBOX[($tmp >> 24) & 0xFF]) << 24 |(self::SM4_SBOX[($tmp >> 16) & 0xFF]) << 16 |(self::SM4_SBOX[($tmp >> 8) & 0xFF]) << 8 |(self::SM4_SBOX[$tmp & 0xFF]);
            $x[$i+4]=$x[$i]^($buf^$this->sm4Rotl32(($buf), 2)^ $this->sm4Rotl32(($buf), 10) ^ $this->sm4Rotl32(($buf), 18)^ $this->sm4Rotl32(($buf), 24));
      }

      $plainText = [];
      for ($k=0; $k<4; $k++) {
            $plainText=($x>> 24)& 0xFF;
            $plainText=($x>> 16)& 0xFF;
            $plainText=($x>> 8)& 0xFF;
            $plainText=($x)& 0xFF;
      }

      return $this->bytesToString($plainText);
    }

    private function sm4Encrypt($plainText)
    {
      $x = [];
      for ($j=0; $j<4; $j++) {
            $x[$j]=($plainText[$j*4]<<24)|($plainText[$j*4+1]<<16)| ($plainText[$j*4+2]<<8)|($plainText[$j*4+3]);
      }

      for ($i=0; $i<32; $i++) {
            $tmp = $x[$i+1]^$x[$i+2]^$x[$i+3]^$this->_rk[$i];
            $buf= (self::SM4_SBOX[($tmp >> 24) & 0xFF]) << 24 |(self::SM4_SBOX[($tmp >> 16) & 0xFF]) << 16 |(self::SM4_SBOX[($tmp >> 8) & 0xFF]) << 8 |(self::SM4_SBOX[$tmp & 0xFF]);
            $x[$i+4]=$x[$i]^($buf^$this->sm4Rotl32(($buf), 2)^ $this->sm4Rotl32(($buf), 10) ^ $this->sm4Rotl32(($buf), 18)^ $this->sm4Rotl32(($buf), 24));
      }

      $cipherText = [];
      for ($k=0; $k<4; $k++) {
            $cipherText=($x>> 24)& 0xFF;
            $cipherText=($x>> 16)& 0xFF;
            $cipherText=($x>> 8)& 0xFF;
            $cipherText=($x)& 0xFF;
      }

      return $this->bytesToString($cipherText);
    }

    private function stringToBytes($string)
    {
      return unpack('C*', $string);
    }

    private function bytesToString($bytes)
    {
      return vsprintf(str_repeat('%c', count($bytes)), $bytes);
    }

    private function pad($data)
    {
      $bytes = $this->stringToBytes($data);
      $rem = $this->_block_size - count($bytes) % $this->_block_size;
      for ($i = 0; $i < $rem; $i++) {
            array_push($bytes, $rem);
      }
      return $bytes;
    }

    private function unPad($data)
    {
      $bytes = $this->stringToBytes($data);
      $rem = $bytes;
      $bytes = array_slice($bytes, 0, count($bytes) - $rem);
      return $this->bytesToString($bytes);
    }

    private function sm4Rotl32($buf, $n)
    {
      return (($buf << $n) & 0xffffffff) | ($buf >> (32-$n));
    }

    private function sm4KeySchedule($key)
    {
      $this->_rk = [];
      $key = array_values(unpack("C*", $key));

      $k = [];
      for ($i=0; $i<4; $i++) {
            $k[$i] = self::SM4_FK[$i]^(($key<<24) | ($key<<16) |($key<<8) | ($key));
      }

      for ($j=0; $j<32; $j++) {
            $tmp = $k[$j+1]^$k[$j+2]^$k[$j+3]^ self::SM4_CK[$j];
            $buf = (self::SM4_SBOX[($tmp >> 24) & 0xFF]) << 24 |(self::SM4_SBOX[($tmp >> 16) & 0xFF]) << 16 |(self::SM4_SBOX[($tmp >> 8) & 0xFF]) << 8 |(self::SM4_SBOX[$tmp & 0xFF]);

            $k[$j+4]=$k[$j]^(($buf)^($this->sm4Rotl32(($buf), 13))^($this->sm4Rotl32(($buf), 23)));
            $this->_rk[$j]=$k[$j+4];
      }
    }
}
demo:

SM2 SM3 SM4简介

1. SM2
1.1 SM2加解密参数信息
1、 私钥长度与所选择的素域的比特串长度一致 或者与 二元扩域的比特长度一致
2、 公钥长度是私钥长度的两倍
3、 一般而言,选择Fp-256,从而私钥长度为256比特,公钥为512比特
4、 明文长度可以为任意值,其基本原理类似于流密码,由KDF生成与明文长度一致的密钥流,与明文进行异或。

1.2 基本概念
Fp:包含p个元素的素域
Fq:包含q个元素的有限域
F2m:包含2m个元素的二元扩域
O:椭圆曲线上的一个特殊点,称为无穷远点或零点,是椭圆曲线加法群的单位点
P:P=(xp,yp)是椭圆曲线上除O之外的一个点,其坐标xp,yp满足椭圆曲线方程
n:基点G的阶(n是#E(Fq)的素因子)
#E(Fq):E(Fq)上点的数目,称为椭圆曲线E(Fq)的阶

无特殊约定的情况下,用户身份标识ID的长度为16字节,其默认值从左至右依次为:
0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38

1.3 Fp上椭圆曲线消息加解密
椭圆曲线方程为:y2=x3+ax+b
示例1:Fp-256
素数p:256 bit
系数a:256 bit
系数b:256 bit
基点G=(xG,yG),其阶记为n
坐标xG:256 bit
坐标yG:256 bit
阶n: 256 bit
私钥dB:256 bit
公钥PB=(xB,yB)为:
坐标xB:256 bit
坐标yB:256 bit

1.3.1 加密各步骤中的有关值:
产生随机数k: 256 bit
计算椭圆曲线点 C1=G=(x1,y1)
坐标x1:256 bit
坐标y1:256 bit
C1选用未压缩的表示形式,点转换成字节串的形式为PC || x1 || y1,其中PC为单一字节且PC=04,仍记为C1

计算椭圆曲线点PB=(x2,y2), x2和y2均为256 bit
消息M的长度为 keln
计算t =KDF(x2 || y2, klen)其中KDF表明使用x2 || y2,作为参数,生成klen长度的密钥流。

计算C2 = M 异或 t
计算C3 = Hash(x2 || M || y2)

密文为: C = C1 || C2 || C3

1.3.2解密各步骤中的有关值:
计算椭圆曲线点 C1 = (x2,y2), x2和y2均为256 bit
计算t =KDF(x2 || y2, klen)其中KDF表明使用x2 || y2,作为参数,生成klen长度的密钥流。

计算M‘= C2 异或 t
计算u = Hash(x2 || M || y2)

1.4 Fp上椭圆曲线消息签名验签
示例2:Fp-256 椭圆曲线方程为y2=x3+ax+b
素数p:256 bit
系数a:256 bit
系数b:256 bit
基点G=(xG,yG),其阶记为n
坐标xG:256 bit
坐标yG:256 bit
阶n: 256 bit
私钥dA:256 bit
公钥PA=(xA,yA)为:
坐标xA:256 bit
坐标yA:256 bit
待签名消息M: message digest
杂凑值ZA = H256(ENTLA || IDA || a || b || xG || yG || xA ||yA)
作为签名者的用户A具有长度为entlenA比特的可辨别标识IDG(用户标识转换成ASCII码即可),记ENTLA是由整数entlenA转换而成的两个字节(长度是以bit为单位的)。

1.4.1 签名步骤
M‘ = ZA|| M
计算 e = H256(M’) 256 比特 —其中的H256一般为SM3
产生随机数k :256比特
计算椭圆曲线点G=(x1,y1),x1 256比特,y1 256比特
计算 r = (e+ x1) mod n,得到256 比特
计算 (1+dA)-1:256 比特
计算 s =((1+dA)-1 (k – r dA)) mod n:256 比特
消息M的签名为(r, s)

1.4.2 验证数字签名步骤
计算e ‘= H256(M’) 256 比特 —其中的H256一般为SM3
t=(r+s) mod n :256 比特
计算椭圆曲线点 G=(x0’,y0’)
计算椭圆曲线点 PA=( x00’,y00’)
计算椭圆曲线点 G+PA=(x1’,y1’)
验证((e’+ x1’)是否等于r,若等于则验证通过;否则验证不通过。

基本原理:G+PA=G

1.5 密钥协商
密钥协商是在两个用户之间建立一个共享秘密密钥的协商过程,通过这种方式能够确定一个共享秘密密钥的值。

设密钥协商双方为A、B,其密钥对分别为(dA, QA)和(dB, QB),双方需要获得的密钥数据的比特长度为klen。密钥协商协议分为两个阶段:

第一阶段:产生临时密钥对
用户A:调用生成密钥算法产生临时密钥对(rA,RA),将RA和用户A的用户身份标识IDA发送给用户B。
用户B:调用生成密钥算法产生临时密钥对(rB,RB),将RB和用户B的用户身份标识IDB发送给用户A
第二阶段:计算共享秘密密钥
用户A:
余因子h:1
输入参数:QA QB RA IDA RB IDB dA rA klen
输出参数:K(位长为klen的密钥数据)
步骤:
用IDA和QA作为输入参数,调用预处理1得到ZA;
a) ZA=SM3(ENTL || IDA || a || b || xG || yG || xA || yA)
i. ENTL为由2个字节表示的ID的比特长度
ii. IDA为用户身份标识
iii. a、b为系统曲线参数
iv. xG yG为基点
v. xA yA为用户的公钥

用IDB和QB作为输入参数,调用预处理1得到ZB;
a) ZB计算过程同ZA

以klen、ZA、ZB、dA、rA、RA、QB、RB为输入参数,进行运算得到K。
a) 记RA =(x1, y1) RB =(x2, y2)
b) 取x1’=2127+( x1 & (2127-1) ) :为128比特
c) 计算tA=( dA + x1’ * rA):为256比特
d) 取x2’=2127+( x2 & (2127-1) ) :为128比特
e) 计算椭圆曲线点RB=(x~B0~, y~B0~)
f) 计算椭圆曲线点PB+RB =(xB1, yB1)
g) 计算U= ( PB+RB)=( xU, yU)
h) 计算K=KDF(xU || yU || ZA、ZB, klen )

关键点
a) 两边均可计算 (dA+x1’rA)(dBPG+x2’rBPG)

2. SM3
SM3是对长度为l(l < 264)比特的消息m,SM3杂凑算法经过填充、迭代压缩和输出选裁,生成杂凑值,杂凑值输出长度为256比特。

比特串:有序的0和1的序列
字节串:有序的字节序列,其中8比特为1个字节

输入是长度小于264的消息比特串
输出是长度为256比特的杂凑值

填充:假设消息m的长度为l比特,则首先将比特“1”添加到消息末尾,再添加k个”0”,k是满足l+1+k=448 mod 512 的最小的非负整数。然后再添加一个64位比特串,该比特串是长度l的二进制表示。填充后的消息m‘的比特长度为512的倍数。

3. SM4
SM4密码算法是一个分组算法。该算法的分组长度为128比特,密钥长度为128比特。加密算法与密钥扩展算法都采用32轮非线性迭代结构。数据解密和数据加密的算法结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。




页: [1]
查看完整版本: sm2国密加密算法php实现